Autopore IV Series - Mercury Porosimeter 9500 and 9510

Micromeritics’ AutoPore IV 9500 Series characterizes a material’s porosity by applying various levels of pressure to a sample immersed in mercury. The pressure required to intrude mercury into the sample’s pores is inversely proportional to the size of the pores. This is called mercury porosimetry, or often, “mercury intrusion.”

The AutoPore IV series provides high-quality analysis data and comes with enhanced data reduction and reporting packages, faster pressure ramp rates, a more flexible and controllable vacuum system, and a redesign of both the low-and high-pressure generation systems.

Features

  • Capability to measure pore diameters from 0.003 to ~1000 µm*
  • Available with two low and one high-pressure ports or four low and two high-pressure ports for increased sample throughput
  • Available in 33,000 psi or 60,000 psi models
  • Low noise, high-pressure generating system
  • Enhanced data reduction package; includes tortuosity, permeability, compressibility, pore-throat ratio, fractal dimension, Mayer-Stowe particle size, and more
  • Operates in scanning and time – or rate – equilibrated modes
  • Collects extremely high-resolution data; better than 0.1 µL for mercury intrusion and extrusion volumes

Sequestration of Carbon Dioxide Greenhouse Gas

There are numerous energy-related approaches to managing CO2 that include several carbon free energy sources (e.g. nuclear, solar, wind, geothermal, and biomass energy). Scientists are also searching for ways to increase the efficiency of energy conversion so that smaller amounts of fossil fuel energy are required for the same energy output. However, although promising, these alternatives currently have a relatively small effect on current fossil fuel demand and usage. Fossil fuels continue to supply the overwhelming majority of the world’s energy consumption. Increasing energy demands, the lag in converting to alternative energy sources, the global economic dependence on fossil fuels, and its relative low cost and high availability mean that fossil fuel consumption will likely continue for decades to come. As a result, there is a large amount of scientific research focused on effective methods to remove large amounts of carbon dioxide from the atmosphere and industrial emission sources, and store it safely.

A number of researchers now believe that sequestration of carbon dioxide in deep geological formations shows much promise as a long-term solution for safely storing CO2 that is captured through cleanup efforts. The basic idea involves compressing captured CO2 into a dense fluid and injecting it into a porous deep geological formation, where the rising CO2 fluid is sealed beneath a layer of impermeable cap-rock. Years of experience in the United States with natural gas storage, injecting CO2 for enhanced oil recovery (EOR), Enhanced Coal Bed Methane recovery (ECBM), and the injection of acid gases into saline geological structures have provided an incentive to pursue this promising theory. The U.S. Department of Energy, led by the NETL and Regional Carbon Sequestration Partnerships (RCSP) in partnership with industry and academia, is pursuing a CO2 Sequestration Research, Development, and Demonstration Program. Field tests are currently taking place throughout the U.S. and Canada. Storage areas being investigated include depleted oil and gas reservoirs, unminable coal seams, and deep saline formations. Many of these formations have contained naturally stored carbon dioxide, other gases, and fluids for millions of years and are believed to have the potential to store many years of human-generated CO2. In addition, in the last fifteen years, three large-scale CO2 storage projects in Norway (1996), Canada (2000), and Algeria (2004), have begun operations and reported no safety or health-related incidents.

Even though these formations have the theoretical potential to store human-generated CO2, it is estimated that annually over a billion metric tons must be sequestered in order to make a significant reduction. Many factors have to be studied prior to determination and full-scale implementation of appropriate sequestration sites. Factors such as proper engineering design and monitoring, hydrologic-geochemical-geomechanical processes that govern the long-term storage of carbon dioxide in the subsurface need to be understood. Research scientists require methods to characterize geological materials that help determine the value of the formation as a reservoir.

Since 1962, Micromeritics has supplied analytical tools that determine porosity and surface area, critical measurements needed for the study of potential CO2 sequestration sites. Surface area and mercury porosimetry instruments have been used as necessary tools to characterize the sealing and fluid-transport properties of fine-grained sedimentary rocks under the pressure and temperature conditions of geological carbon dioxide. Pore volume measurements help predict the capacity of a formation. Pore size is an important variable in determining the rate at which CO2 will flow through the formation while filling. Micromeritics’ AutoPore Mercury Porosimeter has been used to determine the sealing capacity and pore-throat aperture size distribution on reservoir core samples. Fluid transport experiments can be complemented by the combination of B.E.T. specific surface area data collected on Micromeritics’ ASAP 2020 Accelerated Surface and Porosimetry System and mercury porosimetry data. These experiments help reveal significant changes in the transport properties and sealing efficiency of the samples. The ASAP 2020 is also an ideal tool for measuring both micropore and mesopore distributions in coal, therefore providing valuable information for ECBM studies.